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1 Introduction

In the beginning of the eighties Faddeev and Takhtajan [1] suggested that the
fundamental excitations of the one-dimensional Heisenberg model should be
viewed as massless kink-like s = 1/2 objects, the so called spinons. Although
this is not the only way to think of the excitations in the Heisenberg model
it is often a quite useful picture. A natural generalization of the Heisenberg
model is to include a next-nearest neighbor term S; - S;;o of strength Ja,
resulting in the following Hamiltonian:

H =Y [JSi-Sit1 + 1S; - Siyal, (1)

(3

Several physical compounds exists that are fairly well described by such a
Hamiltonian. Perhaps most notably CuGeOs [2]. It is in this case useful
to think of the spins as being arranged in a zig-zag manner as shown in
Fig. 1. At the critical coupling J, ~ 0.241167 [3-5] systems described by

Fig. 1. The zig-zag chain

the Hamiltonian, Eq. 1, enters a spontaneously dimerized phase and a gap
opens up in the excitation spectrum. The Majumdar-Ghosh [6] (MG) point,
Jo = J/2, constitutes a disorder point [7] beyond which the short-range
correlations become incommensurate. The associated Lifschitz point, where
the peak in the structure factor moves away from 7, has been determined
to be Jp/J = 0.52063(6) [8] using DMRG methods and the ensuing short-
range incommensurate correlations have been studied in detail by White and
Affleck [9]. In the present contribution we focus on how the behavior of the
spinons is changed once the dimerized phase is entered. The fundamental
excitations are now real kinks separating two different dimerization patterns
and we therefore refer to them as solitons. These solitons become massive in
the dimerized phase.
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In order to take into account the three-dimensional lattice in a one-
dimensional model one often introduces an explicit dimerization § yielding a
staggered nearest neighbor coupling:

H = [J(146(=1)")S; - Siz1 + J2Si - Sita]. (2)

The phase diagram of this model as well as the correlations have previously
been investigated using DMRG techniques by Pati et al. [10] and Chitra
et al. [11]. Schonfeld et al. [12] have investigated the magnetic field phase
diagram using DMRG methods and the thermodynamics of related models
have been investigated using transfer matrix DMRG by Maisinger et al. [13].
Our interest here is to study the spectrum of low lying excitations in the
dimerized phase, Jy > Ja., to show that solitons and anti-solitons form a
ladder of triplet-singlet bound-states [14].

A solitonic picture of the excitations in frustrated spin chains was first
introduced by Shastry and Sutherland [15] and more recently by Khomskii
et al. [16] as well as others [17-20]. In the context of the so called saw-tooth
lattice or delta-chain, corresponding to Fig. 1 with every second J> coupling
set to zero, the solitonic excitations have been investigated by Nakamura et
al. [21] and Sen et al. [22]. In this case the symmetry between solitons and
anti-solitons is absent. Thermodynamic properties of this model has been
investigated using transfer matrix DMRG methods by Maisinger et al. [13].

2 Numerical Considerations

In order to study the excitations in the dimerized phase we have performed
extensive DMRG calculations. See the contribution by Noack and White in
this book. However, where needed we use exact diagonalization techniques
to obtain a more complete picture of the excitation spectrum. For the model
Eq. 1 the ground-state (and a few excited states) are exactly known at the
MG point. In the vicinity of the MG point the correlations of the above
models are extremely short-ranged and DMRG calculations are exact for the
matrix product ground-state of the Hamiltonian, Eq. 1, at the MG point.
For a discussion of matrix product states see the contribution of Rommer
in this volume. The short correlation length is very helpful when performing
numerical work since finite size corrections will be very small and for the exact
diagonalization results we are essentially limited to the neighborhood of the
MG point if we want to study the excitations in detail. The short correlation
length also improves the precision of the DMRG calculations tremendously
and we usually never have to keep more than m = 128 states. In order to study
the excitations it is however crucial that we can distinguish odd and even
multiplets. This is done by performing the calculations in the S5 = 3", S7 =0
subspace and using spin-inversion as a symmetry along with real-space parity.
Both of these symmetries reduces the size of the Hilbert space by roughly a
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factor of two and hence combining them reduces the overall computational
over-head by a factor of four. Spin-inversion has the added benefit of being
an ‘on-site’ symmetry and can therefore also be used in combination with the
finite system method. Under spin-inversion even and odd total spin multiplets
transform differently and can be distinguished. Symmetries are extensively
used in DMRG calculations and for more details we refer the reader to the
contributions by Ramasesha and Barford in the present volume. A simple
way of implementing parity in the infinite system method is discussed in
Ref. [23] and there is a nice paper by Ramasesha et al, Ref. [24], where the
implementation of more complicated symmetries are discussed.

3 The Soliton Gap

We begin with a discussion of systems without any explicit dimerization, de-
scribed by Eq. 1. For a system with an even number of spins the ground-state
is always a singlet. However, for an odd number of spins the lowest energy
state has spin % We therefore say that the odd-site system contains one
soliton. One way of defining the energy, Ay, required to create a soliton is
therefore to say that it is equal to Agzp = limy, 00 Eo(L = 2n+1)—(2n+1)eq,
where Ey(2n + 1) is the ground-state energy of an odd-length system with
L = 2n+1 sites, and eg is some measure of the ground-state energy per spin of
the corresponding even-length system. Here it is crucial that periodic bound-
ary conditions are used. Similar ideas have been used by Malék et al. [19]. At
the MG point the ground-state energy for even-length systems is —3L.J/8,
hence eg = —3J/8 does not depend on L. Thus, using exact diagonalization
techniques, we have obtained A,y /J = 0.1168, J» = J/2. If the soliton does
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not interact with the chain boundaries we can check this result using DMRG
calculations on systems with open boundary conditions. This turns out to
be the case and DMRG results for the soliton gap is in complete agreement,
with the above result. However, the fact that the soliton remains a ‘bulk’
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excitation is non-trivial. In Fig. 2 the ground-state spin-density is shown for
an odd-length system. Clearly, the soliton is repelled by the open boundaries
and enters roughly a particle in a box state as indicated by the solid circles. If
the density of solitons can be increased sufficiently the spin-density should be
experimentally observable in NMR experiments. Away from the MG point
finite-size corrections to Ay, become much more important and a reliable
determination is only possible using DMRG calculations. As a function of
Jo we have calculated the soliton gap (Ref. [14]) for J> < J/2, observing
an exponential decrease as Jo. is approached. For J; > J/2 short-range cor-
relations become incommensurate [8] rendering a reliable determination of
Eo(L = 2n + 1) very difficult. Using exact diagonalizations techniques the
complete dispersion of the soliton state for odd-length systems can be deter-
mined. We have done this at the MG point and a well defined single mode is
observable around go = 7/2 [14] with a minimum corresponding to the soli-
ton gap. The soliton s always moves two sites when it moves and hence lives
exclusively on one sublattice with the anti-soliton § confined to the other.
Hence, it is natural to expect a minimum in the dispersion at go = 7/2. As-
suming a relativistic dispersion of the soliton, we find for ¢', the wave-vector
closest to qg:

2

Buor(d') = Avot + g”j‘il O, (3)
¢’ is also the lowest energy state for the odd-length system. Hence, exploiting
the finite-size corrections for systems with open boundaries we can determine
the soliton velocity, v. At the MG point we find v/J ~ 0.43 — 0.45a.

Perhaps the most interesting question to ask is whether ss bound-states
form below the continuum. If such bound-states were to form one would ex-
pect them to come in triplet-singlet pairs since the soliton and anti-soliton
each are s = 1/2 particles. Furthermore, if the soliton and anti-soliton inter-
act we would expect a splitting between the associated singlet and triplet,
whereas in the absence of any interaction they should be degenerate and
both have an energy of precisely 2A,,;. Using spin-inversion to separate the
triplet and singlets we have calculated the two gaps for J; < J/2. The re-
sults are shown in Fig. 3 for the MG point. Clearly, the singlet and triplet
become degenerate in the thermodynamic limit and performing an extrapo-
lation we find A;—g = As—1 ~ 0.2340(1)J = 2A,4. One find similar results
for any J> < J/2 and we conclude that for these values of J> bound-states do
not form close to ¢ = 0, 7. However, it remains a possibility that s5 bound-
states form at higher momenta around ¢ = 7/2, where exact bound-states are
known [25], or around g = 0,7 for J > J/2 [14]. Thus, the soliton gap, Ass,
can actually be inferred directly from the triplet gap, As—;, as calculated
by White and Affleck [9]. For J, < Jo. the picture is quite different since
the system is initially gapless. However, in the presence of a small 4, it is
expected from field theoretical arguments that As—¢/A,—1 = v/3 [26,3,27,28]
in the limit of § — 0 for any Jy < Jo..
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4 Explicitly Dimerized Systems - ss Bound States

We next consider systems described by Eq. 2, where an explicit dimerization
0 is included. In this case, it has been proposed by one of us [18] that a
ladder of triplet-singlet bound-states should occur. The introduction of the
explicit dimerization, will favor one of the two otherwise almost degenerate
ground-states. The other one being higher in energy of a factor ~ L§. Hence
if the soliton and anti-soliton is separated by only a small distance one can
imagine that between them the ‘wrong’ ground-state is found, and it then
seems likely that for small § a linear potential will be created between the
soliton and anti-soliton. This is tentatively indicated in Fig. 4. The lowest

V() ~rd
o—o é D i it o—o0 Fig.4. The creation of a linear po-
Soﬁton Antisoliton tential between a soliton and an anti-
Wrong Groundstate soliton.

lying triplet state in the dimerized phase is within this picture best described
as a s5 bound-states and not as a magnon although the difference between
the two is largely one of nomenclature. As § grows the soliton anti-soliton
pair becomes tighter and tighter bound and will eventually resemble a single
well-defined magnon. The triplet bound-state is always accompanied by a
singlet state at a slightly higher energy and at still higher energies a number
of other triplet - singlet bound-states appear as indicated in Fig. 5 in the
rest-frame of the particle. In the real systems these bound-states can acquire

Fig. 5. Singlet and triplet states in the

linear potential. The continuum be-
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a momentum and disperse. Eventually one reaches energies where it becomes
favorable to break up the s5§ bound-state in two lowlying s§ pairs with energy
2A,=1. This point constitutes the onset of the $5-ss continuum and can be
numerically determined as the lowest lying S = 2 state. The natural ques-
tion to ask is now how many bound-states occur. As § decreases the linear
potential becomes more shallow and can accommodate more bound-states.
The continuum, defined as the energy where we can ‘pair-produce’ will also
decrease but not as fast. Hence we expect the number of such bound-state to
increase with decreasing §. At the MG point, Casper and Magnus [25] have
found two exact s§ bound-states, a triplet and singlet both with energy J in
our units. One can show that these states remain exact eigenstates along the
disorder line, § = 1—2.J5/J, with energy (1+40)J (triplet) and (1+36).J (sin-
glet), and momentum ¢ = 7/2. These states are therefore rather high-lying
and could possible form a well-defined single mode at this rather high energy
around ¢ = 7/2 even with § = 0, as suggested by Shastry and Sutherland [15].
It is interesting to note that the splitting between the first triplet and singlet
bound-state is always 2dJ along the disorder line at ¢ = 7/2. Numerically, it
turns out that this splitting varies only slightly with ¢q. Hence, even at ¢ = 0
do we find a splitting close to 26.J. Using DMRG techniques with spin inver-
sion we can follow the lowest lying triplet and singlet states in most of the
parameter space. However, to get a complete picture of the dispersion of these
bound-states we are limited to exact diagonalization studies in regions where
the correlation length is very small in order to limit finite size effects. This is
the case along the disorder line and in particular in the vicinity of the MG
point. Some of our results are shown in Fig. 7 which clearly show three triplet
bound-states and at least two singlet bound-state below the continuum for
J2 = J/2, § = 0.05.

Another important effect is the interaction between impurities and the
solitons. A strong impurity will completely break the chains and naively one
can model them simply as open chains. The question now becomes if the soli-
tons somehow will bind to the ends of an open chain. In order to investigate
this, we imagine an open chain with an odd number of sites and hence a single
soliton in the ground-state. At the end of the chain that starts with a weak
link a localizing potential will now be created as indicated in Fig. 6. Due to

=S=3/2 Band Fig. 6. The potential well created by
an open boundary. For the case of an
Ash S S=1/2 Boundstates  odd site system the continuum will
— begin at As—1, the lowest state with
S =3/2.

the non-zero ¢ the soliton will bind to the chain-end and a number of S = 1/2
soliton-impurity bound-states will be possible in this potential well. As was
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the case for the ss states the soliton-impurity complex can thus be excited
into a number of higher lying bound-states before one reaches the continuum
defined by the energy where we can excite bulk ss states, i. e. As—;. Exper-
imentally transitions between such bound-states can be investigated using
Raman, NMR or ESR techniques. Numerically, these bound-states are easily
accessible since they are localized. Around the MG point a number of them
occur [29].

5 Experimental Evidence

Although several compounds exists that might approximately be described
using the simplified Hamiltonians, Eq. 1 and Eq. 2, we shall here concen-
trate on CuGeQj3. Following the initial discovery of a spin-peierls transition
in CuGeOg3 by Hase et al. [2] a large number of experimental investigations
ensued. The experimental situation has been reviewed by Boucher and Reg-
nault [30], and we shall here mainly concentrate on the more recent results
of relevance to the presence of soliton bound-states. It is important to re-
alize that couplings to the three-dimensional lattice play an important role
in CuGeOs [31]. These three-dimensional couplings are taken into account
in Eq. 2 only at the mean-field level through 4, leading to estimates of
J=160 K, J5/J = 0.36, 6 = 0.014 [32], and any dynamical effects stem-
ming from phonons are therefore neglected [33]. Inelastic neutron scattering

Fig.7. (a) The lowest lying triplet
(solid circles), singlets (open circles)
and quintuplets (crosses) for Jp/J =
0.5, 4 = 0.05, L = 28, as a function
of k = 2q. Results for L =32, k =0
are shown to the left. The inset shows
the same spectrum from J>/J = 0.45,
0 = 0.10, L = 20. (b) The dynamical
structure factor S**(q,w) for Jo/J =
0.5, 6 = 0.05, L = 28 and a broad-
ening of € = 0.04J. The solid, dashed
and dotted lines indicate the 3 triplet
branches.

(INS) experiments [34-36] on CuGeO3 have shown rather clear evidence for
a well-defined dispersive mode around ¢ = 7, at 2.1meV=16.8cm~!, with
a second gap to a continuum. INS is sensitive to triplet excitations and it
seems reasonable to interpret this mode as a s3 triplet bound-state. Addi-
tional triplet bound-states seems to be absent in the data. Unfortunately, it is
not possible to calculate the number of bound-states at the physical relevant
parameters since the correlation length is too big. Secondly, using DMRG
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techniques we can so far only access the lowest lying singlet and triplet states
as well as the continuum at S = 2. We therefore study the neighborhood of
the MG point (J2 = J/2) where finite-size corrections a very small. With a
small dimerization, § = 0.05, our results are shown in Fig. 7. As shown in
the first panel a number of s§ bound-states clearly occur in agreement with
previous results [37]. In the second panel is shown the associated spectral
weight. It is interesting to note that the higher lying triplet bound-states
yields an almost negligible weight and hence would be difficult to observe
experimentally. Secondly, the spectral weight stemming from the s5 bound-
states is concentrated almost exclusively around ¢ = 7 in agreement with the
experiments. Even though no clear evidence is seen for higher lying s3 triplet

T
Bound Continuum
states

|

Fig. 8. Raman intensity calculated for
a L = 28 size system with Jy/J = 0.5,
| 0 = 0.05 and a linebroadening £ =
| 0.1.J. The Raman operator ) . Si-Si+1
was used. The dotted line indicates the
lowest lying S = 2 state (L = 28), in-
dicating the onset of the continuum.
‘ ‘ The position of the three singlet ss
W] bound-states below the continuum are
indicated by arrows. See Fig. 7.

Raman weight [a.u.]

bound-states we would expect the accompanying singlet excitations to be vis-
ible in inelastic light scattering (ILS) or Raman experiments. This is indeed
the case. ILS experiments [38] show very clear evidence for a well defined
bound-state around 30 cm~!. We have performed numerical calculations to
check that the observed ss bound-states in Fig. 7 indeed do yield a sizeable
non-zero weight in Raman experiments. Our results are shown in Fig. 8 for a
28 site system with the same parameters as Fig. 7. The singlet s5 are clearly
visible and yield the highest weights. The fact that both a triplet and a sin-
glet bound-state are experimentally observed clearly favors a description in
terms of s3 bound-states. Using NMR techniques it is also possible to study
the formation of a soliton lattice in the high field incommensurate phase of
CuGeOs3 [39].

The formation of soliton-impurity bound-states can also be studied with
ILS techniques. Experimentally [40] one observes a line at 15 cm ! in addition
to the 30cm~! line present in the pure spectrum. The experiments are in
this case performed on Cu;_,7Zn;GeQj. It is reasonable to expect that the
only effect of the Zn is to break the chains and introduce open boundaries.
Hence, a description in terms of soliton-impurity bound-states as outlined
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in the previous section should be applicable. Using DMRG techniques it is
easy to verify that several such bound-states occur [29,41,20]. The additional
line at 15cm ™! is interpreted as a transition between two soliton-impurity
bound-states [40]. The triplet gap is A,—; = 16.8cm~! (see Fig. 6), and the
fact that the observed line occurs at energies slightly below this implies that
at least two S = 1/2 bound-states occur. One might expect the number of
soliton-impurity bound-states to be related to the number of s5 bound-states
(although in a non-trivial manner), and the experimental observation of two
soliton-impurity bound-states could hint at the existence of more s5 bound-
states than the triplet and singlet pair that has been observed so far. Any
such additional s5 bound-states could be very loosely bound and occur close
to the continuum making them difficult to detect experimentally.
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