Role of the magneto-elastic coupling in spin-Peierls systems doped with impurities
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The role of the magneto-elastic coupling in spin-Peierls chains doped with spin-0 or spin-1 impurities
is investigated by exact diagonalization and quantum Monte Carlo simulations. The lattice is treated
either classically in the adiabatic approximation or in a fully quantum mechanical calculation. In the
case of an isolated chain, strong bonds form next to the impurity, leading in general to the appearance
of magneto-elastic solitons. In the case of nonmagnetic impurities, the solitonic excitations do not
bind to the impurity. However, the interchain elastic coupling generates an effective attractive
potential at the impurity site which can lead to the formation of a bound state.

PACS: 75.10 Jm, 75.40.Mg, 75.50.Ee, 64.70.Kb

Quasi-one dimensional (1D) spin-Peierls systems at-
tract intense experimental and theoretical activity for
their fascinating magnetic properties. Such systems usu-
ally consist in weakly coupled spin-1/2 Heisenberg chains.
Due to spin-phonon coupling, these materials undergo at
low temperature a transition towards a phase exhibit-
ing a lattice dimerization and a spin gap [1]. Inorganic
compounds like CuGeOs are easily doped by magnetic or
non-magnetic impurities by substituting a fraction of the
spin-1/2 Cu?* ions by spin-0 Zn?* or spin-1 Ni?* ions.
As shown by magnetic susceptibility measurements [2]
and inelastic neutron scattering experiments [3], dop-
ing with impurities leads to a rapid collapse of the spin
gap. Competition between the spin-Peierls phase and
a new antiferromagnetic (AF) phase induced by doping
has been established by magnetic susceptibility measure-
ments [2,4], specific heat measurements [5], neutron scat-
tering [6] and NMR experiments [7]. These experiments
suggest that magnetic moments and enhanced staggered
spin correlations are induced by impurity doping.

From a theoretical point of view, the relevant phonons
in dimerized quasi-1D compounds like CuGeQOjs or
NaV;05 are often considered as three-dimensional, an
assumption which, a priori, would justify a classical
treatment of the lattice. In the dimerized AF Heisen-
berg chain, a model widely used in the literature to de-
scribe these materials, one introduces a fixed dimeriza-
tion J(1 £ §) of the magnetic exchange integral leading
to the opening of a spin gap o 6%/2. In CuGeOs, it
is believed that magnetic frustration (i.e. AF coupling
between next nearest neighbor sites) plays a role. [8,9]
The lowest energy excitations of the dimerized Heisen-
berg chain consist of spinon-spinon bound states [10,11]
lying below the two-magnon continuum.

Extensive work on the effect of impurities in dimerized
spin chains have been carried out [12-14]. The introduc-
tion of vacancies creates finite chains with open bound-
ary conditions (OBC). So far, most treatments of the ef-
fects of the boundaries ignore the lattice dynamics [12,13]

which, physically, is justified when the elastic coupling to
the neighboring chains is large enough. In this case, a fi-
nite chain can end by either a “weak” or a “strong” bond
depending on the sign of the dimerization on this bond.
These two types of boundaries show very different mag-
netic properties: in contrast to the strong bond edge, a
weak bond edge can localize a S = 1/2 magnetic excita-
tion. This effect is responsible for the presence of strong
AF correlations in the vicinity of weak edges. [15]

In the approach discussed above, the effects of impu-
rities have been considered under the two assumptions
that the lattice dimerization is (i) static and (ii) uniform
in space. However, due to the magneto-elastic coupling,
the presence of a spin-1/2 excitation is expected to, lo-
cally, distort the underlying lattice creating an elastic
soliton [16]. Such effects were recently investigated in
the context of the incommensurate phase of spin-Peierls
systems under magnetic field [17,18]. In this work, we in-
vestigate the role of the spin-phonon coupling in Heisen-
berg chains in the vicinity of spin-0 or spin-1 impurities
by exact diagonalization (ED) and quantum Monte Carlo
(QMC) simulations. The lattice is treated either classi-
cally in the adiabatic approximation [17], i.e. allowing for
non-uniform static lattice distortions, or in a fully quan-
tum mechanical way [19] introducing, in addition, the lat-
tice dynamics. In an isolated chain, we have found that
strong bonds form next to an impurity. For nonmagnetic
impurities, solitonic excitations do not bind to the impu-
rity. However, in this case, the interchain elastic coupling
generates an effective impurity—soliton attractive poten-
tial which leads to the formation of a bound state. The
spatial extension of this bound state is governed by the
strength of the interchain coupling.

The model we first consider is purely 1D and includes
a static, but possibly non-uniform, lattice distortion,

1 2
H) = Jzi:(l +6:)Si - Sip1 + §Kzi:5i , (1)

where the second part corresponds to the elastic energy



lost within the chain. The role of the interchain elastic
coupling H, will be discussed later. The classical mod-
ulations §; living on the bonds have to be determined
from a minimization of the total energy. The pure sys-
tem (which corresponds to periodic boundary conditions,
PBC) is dimerized with §; = §(—1)%.
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FIG. 1. World Line QMC calculation (at 7' = 0.05) of the
modulation d; (a) and the local susceptibility x; (b) (decom-
posed into its uniform x; and alternating xj components) as
a function of the position on a L = 79 chain with OBC. Data
for K =1 and K = 2.5 are shown.

We investigate the effect of spin-0 impurities by con-
sidering chains with OBC (open chains). Open chains
with an odd number of sites must contain at least a spin-
1/2 excitation. Previous QMC simulations supplemented
by a self-consistent determination of the equilibrium dis-
tortion pattern d; (see Ref. [17] for details) have been
extended to this new physical situation. Results for a
L =79 sites open chain shown in Fig. 1 for various pa-
rameters reveal the existence of a single solitonic excita-
tion located away from the chain edges. The zero temper-
ature local susceptibility x; = >, (S7S7) at site i corre-
sponds physically to the average value of SZ with respect
to the global orientation of the total S spin component.
[20] Fig. 1(b) show that x; oscillates rapidly between pos-
itive and negative values (large staggered component)
and has the largest amplitude of both its uniform and
staggered components in the region where the dimer or-
der parameter is suppressed, i.e. around the soliton. This
result is quite different to that seen in fixed dimerization
calculations [13] where it was observed that spin-1/2 ex-
citations are bound to the chain edge. For increasing K
(i.e. for decreasing spin-lattice coupling), the width of
the soliton increases and the solitonic pattern continu-
ously evolves into a sinusoidal distortion as expected in
the weak coupling limit. It should be stressed that dif-
ferent QMC runs lead to random degenerate equilibrium
configurations corresponding to the very same solitonic
pattern centered on different sites in a wide area around

the center of the chain. However, no changes occur at
the two edges of the chains which, systematically, end
with a strong bond (i.e. §; > 0). This clearly indicates
that there exists a short range repulsion between the im-
purity (edges) and the soliton. One should notice that,
independently of the presence of the soliton (i.e. for odd
or even chains), |0;| increases in the close vicinity of the
edges, in contrast with the analytical results of Ref. [14].
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FIG. 2. World Line Monte Carlo calculation (at T' = 0.05)
of the modulation d; (a) and the local susceptibility x; (b) as
a function of the position on a L = 80 chain with PBC and a
spin-1 impurity at site ¢ = 40. Data for K = 2 are shown.

The case of a spin-1 impurity has also been considered
by assuming, for the sake of simplicity, the same exchange
integral and elastic constant on the two bonds on each
side of the impurity. Previous calculations [21] assuming
a uniform dimerization of the chain have shown that spin-
1 impurities lead to more localized states than spin-0
impurities (static vacancies). The QMC results shown
in Fig. 2 reveal that the two bonds next to the spin-
1 impurity become especially strong indicating that the
impurity and the two neighboring S=1/2 spins form an
effective spin-0 defect leading qualitatively to the same
physics as in the case of a S = 0 vacancy. Indeed, the
solitonic pattern shown in Fig. 2(b) resembles the ones
obtained previously. However, it should be noticed that
the new profile is not completely symmetric and that
the soliton is always located close to the impurity. This
might signal a small attraction in the vicinity of a spin-1
impurity. This might be due to the fact that the three-
site system formed by the S = 1 impurity and its two spin
S = 1/2 neighbors spends most of the time (~ 80%) but
not all the time in the S = 0 state leading to a residual
impurity-soliton attraction.

In order to investigate the role of the lattice dynamics,
next we generalize the previous approach by assuming a
coupling to dynamical phonons,

Hy =7 (1+g(bi +b))S; - Sip1 + Qblb;. (2)



For sake of simplicity, optical dispersionless modes are
considered here. While the adiabatic treatment discussed
above is justified in the  — 0 limit, the lattice dynam-
ics can not be neglected when €2 and J becomes com-
parable. In this case, the lattice modulation can be de-
fined by §; = g(bi + b;‘) The treatment of the phononic
degrees of freedom will relie here on a variational ap-
proach [22] which gives accurate results [19]. Previous
calculations [19] have shown that the lowest S = 1/2 ex-
citations of this model correspond also to massive solitons
and antisolitons. Furthermore, soliton and antisoliton do
not bind in the strictly 1D case.
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FIG. 3. Modulation d; (a) and spin density <Sf> (b) in
the GS of a L = 13 sites open Heisenberg chain coupled to
dynamical phonons. Parameters are shown on the plot. (c)
Finite size scaling of the soliton-impurity binding energy in
the case of a vacancy (as indicated on the plot).

The results obtained by ED for an open chain with
an odd number of sites are shown in Fig. 3. The lattice
modulation pattern and the spatial variation of the spin
polarization are very similar to the results obtained in the
adiabatic treatment of the lattice. In particular, strong
bonds (§; > 0) also form at the chain ends and a soliton
appears in the middle of the chain.

In order to get information on the effective interaction
between a soliton and the chain ends, it is instructive to
define the soliton-impurity binding energy on a L = 2p+1
chain as EB (L) = EIS(L)—ES (L)—es—eI, where E]S(L)
is the ground state energy of an L-site chain with an im-
purity (e.g. with OBC for a S = 0 impurity), Ej(L) is
the energy of the pure system obtained for even number
of sites and interpolated to L, and eg (e;) is the extrapo-
lated soliton (impurity) energy (see Ref. [19]). The finite
size scaling of Ep is shown in Fig. 3 and reveals no bind-
ing in the thermodynamic limit. The conclusion is also
similar when a finite magnetic frustration @ = Jo/J # 0
is considered (in that case, a term Hp = J2 ), S; - Sij2
is added to Hamiltonian (2)). Preliminary analogous re-
sults for the case of S = 1 impurities indicate a nonzero

binding between the impurity and the soliton. [23] The
absence of impurity-soliton bound states for S = 0 impu-
rities and the possible existence of binding for S = 1 im-
purities are consistent with the previous results obtained
in the adiabatic treatment of the lattice.

S;(w) [au]
S(q,w) [aul]

FIG. 4. (a) Local dynamical spin structure factor S;;(w)
calculated on the various sites (indicated on the plot) of a
L = 11 spin chain coupled to dynamical phonons. (b) Dy-
namical spin structure factor S(g,w) for the same system as
(a) (q in units of 27/L). Parameters are as in Fig. 3.

The local dynamical spin-spin correlation function is
shown in Fig. 4(a). The reminiscence of the spin gap of
the chain with PBC is clearly seen at an energy w ~ .J.
However, spectral weight appears at much lower energy.
It can be attributed to the soliton excitation which be-
haves as a S = 1/2 object weakly connected to the rest
of the system, consistently with the behavior discussed
above with respect to Fig. 1. If one labels the sites from 1
to L starting from the left end of the chain, we observe a
large low energy weight at the “odd” positions, 1 = 2k+1
due to the dimerization pattern, with the largest peak at
the closest site to the center. In fact, this can be qual-
itatively understood by assuming that the (free) soliton
can move by hopping “over” a strong bond. This feature
also manifests itself in the low energy peak in S(q,w)
near q = 7 as it can be seen in Fig. 4(b). This is similar
to what has been observed in fixed dimerization calcu-
lations. [12] The remnants of high energy branch of the
pure system can be still seen.

Lastly, we investigate the role of a realistic interchain
coupling H . To illustrate the role of H,, let us con-
sider the physical situation of a finite chain cut by two
spin-0 impurities at its ends and immersed in the bulk.
In the dimerized phase, the neighboring chains produce
a ¢ = m potential of the form, H, = K+, 6;6¢"". Here
the modulation of the neighboring chains is treated in
the mean-field approximation, i.e. §¢*¢ = (—1)idy, but
the full spatial dependence in the chain with the impuri-
ties is retained. The amplitude of the external potential
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FIG. 5. (a), (b): QMC calculation (at T' = 0.05) of the
modulation §; vs ¢ on a L = 79 chain with OBC coupled to a
small external dimerization. (c), (d): the same for a L = 80
chain. In this case S vs i is also shown.

is then related to the elastic constant K| between the
chains by K’ = K dp. In the case of finite chains with
an odd number of sites, the external potential tends to
form a weak bond on, e.g., the left end and a strong bond
on the right end. Therefore, the soliton, which, according
to the previous study, is free for vanishing K’, will ex-
perience a confining force proportional to its separation
from the left end. This attractive potential originates
physically from the misfit between the dimerization pat-
tern on the left side of the soliton and the dimerization
pattern of the bulk. Our numerical calculations shown in
Fig. 5 confirm this intuitive picture. As seen in Fig. 5(a),
a very small coupling K’ can suddenly push the soliton
towards the left end and the equilibrium position is ob-
tained when the small confining potential is equilibrated
by the short range repulsive potential created by the im-
purity. For larger and larger K', the confining potential
becomes steeper and steeper and, eventually, the soliton
moves completely to the left end (Fig. 5(b)). The case of
an open chain with an even number of sites is also partic-
ularly interesting (Fig. 5(c),(d)). If the external potential
is out-of-phase with the open chain dimerization (i.e. J;
for K' = 0 and 6¢** have opposite signs), the external po-
tential will lead to the formation of a soliton-antisoliton
pair in the center of the chain. For increasing K’, the two
S = £1/2 excitations migrate towards the chain ends
forming two localized excitations. The excess of S* at
the ends of the chain are fluctuating at low temperature
between +1/2 and —1/2. These calculations strongly
support the fact that soliton-impurity bound states are
stabilized by the interchain elastic coupling. [24]

To summarize, the effects of impurities in spin-Peierls

systems have been studied by numerical methods. In
contrast to previous approaches, local non-uniform de-
formations of the lattice have been considered and major
differences with respect to the case of a uniform dimer-
ization have been outlined. In particular, by computing
the impurity susceptibility and S#(z), we have observed
that the spin-1/2 excitations are bound to the solitons.
Besides, we have shown that, for a strictly 1D model the
solitonic excitations do not bind to the nonmagnetic im-
purities. We thank IDRIS (Orsay) for allocation of CPU
time on the CRAY supercomputers.
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