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The role of the spin-phonon coupling in spin-Peierls chains doped with spin-0 or spin-1 impurities
is investigated by various numerical methods such as exact diagonalization, quantum Monte Carlo
simulations and Density Matrix Renormalization Group. Various treatments of the lattice, in a
fully quantum mechanical way, classically in the adiabatic approximation or using a fixed three-
dimensional dimerization pattern are compared. For an isolated chain, strong bonds form between
the two Spin—% sites next to the impurity site, leading to the appearance of magneto-elastic solitons.
We also show that these excitations do not bind to spin-0 impurities but are weakly attracted by
spin-1 impurities. However, the interchain elastic coupling generates an effective confining potential
at the non-magnetic impurity site which can lead to the formation of soliton-impurity bound states.
We also predict that a soliton and an antisoliton bound to two impurities on the same chain can
annihilate each other when the separation between the impurities is smaller than a critical value

depending on the interchain elastic constant.
PACS: 75.10 Jm, 75.40.Mg, 75.50.Ee, 75.30.Hx

I. INTRODUCTION

Quasi one-dimensional (1D) quantum antiferromag-
nets can exhibit surprising magnetic properties at
low temperature. The recent discovery of the spin-
Peierls (SP) transition in the inorganic compounds
CuGeO3 (Ref. EI) and NaV305 (Ref. E) has drawn both
experimental and theoretical interest. The chemistry of
these compounds indeed allows for the synthesis of large
single crystals and copsequently the achievement of new
experimental studiesd which were not accessible to the
previously known organic SP materials. Nevertheless,
these two compounds have quite different behaviors pre-
sumably due to the fact that while NaV,Os is believed to
have quarter-filled ladders, CuGeOQOg is well described by
weakly coupled spin—% Heisenberg chains. In this sense,
the present studies are more related to this latter com-
pound.

At a critical temperature, T;., the SP compounds un-
dergo a phase transition driven by the spin-phonon cou-
pling. This SP transition, which is characterized by
the opening of a spin gap and a lattice dimerization,
is experimentally signaled by an isotropic drop of the
magnetic susceptibility revealing the non-magnetic na-
ture of the ground state (GS). A general physical pic-
ture can be drawn from the consideration of the exact
GS of the frustrated Heisenberg chain at the so-called
Majumdar-Ghosh point. The spontaneously dimerized
non-magnetic GS is two-fold degenerate, corresponding
to two possible dimerization patterns A and B, which are
a succession of disconnected singlet dimers. The elemen-
tary excitation called soliton (antisoliton) consists of 391
unpaired spin separating A and B (B and A) patternst.

Solitons and antisolitons propagate, then acquiring a dis-
persion.

For temperatures above the critical temperature T,
quasi-1D SP compounds are usually described as inde-
pendent uniform AF Heisenberg chains, in some cases
including terms describing the frustration present in the
system. The nearest neighbor J and next-nearest neigh-
bor aJ exchange integrals can then be estimated by a fit
of the magnetic susceptibilitythll. The high temperature
behavior is governed by J and the position of the maxi-
mum by the frustration ratio a. Valuessuch as J &~ 160 K
and a & 0.36 have been proposed for CuGeOs (Ref. H)

CuGeOs3 can be easily doped by substituting magnetic
Ni?* or non-magnetic Zn’?* impurities to spin—% Cu?t.
A rapid suppression of the spin gap due to impurit)ﬂdop—
ing has been measured by gagnetic susceptibilityl and
inelastic neutron scatteringh experiments. Competition
between the antif gnetic (AF) and SP phases has
also been observedld: . Theoretical work analyzing the
eff lue to the doping by vacancies has been carried
out I, assuming a static dimerization.

The coupling to the lattice plays a major role in SP
compounds. A description of these systems in terms of
a static dimerized Heisenberg chain is widely found in
the literature. This approach has some drawbacks: the
dimerization is introduced de facto in the model and is
totally frozen, the lattice cannot adjust to spin fluctu-
ations, which are essential to understand the behavior
under high magnetic fields, or to inhomogeneities intro-
duced by impurities.

In this paper, SP spin-lattice models with spin-0 or
spin-1 impurities have been studied at T = 0 or very
low temperature using various numerical techniques such




as Exact Diagonalization (ED)IIJI, Quantum Monte-Carlo
(QMC) and Density Matrix Renormalization Group
(DMRG). Emphasis has been put on the appearance of
magneto-elastic excitations and their interplay with im-
purities. A strictly 1D dynamical spin-lattice model is
first studied in Sec. ﬂ Non-uniform dynamical or adia-
batic lattice distortions are considered and the existence
of bound states due to impurities is investigated. The
role of the three-dimensional character of the phonons is
then considered, first in the simplest description in terms
of a static dimerized Heisenberg chain. Bound states be-
tween a soliton and a non-magnetic impurity are quan-
titatively studied in Sec. . A simple physical picture
is also given to explain the spectrum of bound states. In
Sec. ja more involved model is introduced by consid-
ering explicitly the elastic coupling between the 1D spin-
phonon chains. This model enables us to understand the
physical origin of the soliton-impurity bound states.

II. 1D SPIN-PHONON CHAIN
A. Models

The key ingredient of the physics of spin-Peierls com-
pounds is the dynamical spin-phonon coupling. A spin-<
excitation is expected to locally distort the lattice, cre-
ating an elastic soliton. Our starting point is the frus-
trated Heisenberg chain with the parameters J and a
defined below. In addition, we assume a linear depen-
dence of the nearest neighbor exchange integral on the
relative atomic displacement. Dispersionless phonons of
frequency Q@considered for sake of simplicity. One

then obtain ,

4 - o 1
%I(I — Z(l +g(b; +b1)(Si - Sig1 — Z)
+QJZ§j~§j+2+QZ bZTbZ': (1)
i 7

where bZT (b;) is the phononic creation (destruction) oper-
ator at site 7z and g is the magneto-elastic coupling. Note
that we have assumed that the magneto-elastic coupling
associated with the next-nearest neighbor bonds can be
neglected.

The adiabatic limit of Hamiltonian (fl) is of great inter-
est. When the phonon frequency Q is sufficiently small
compared to the spin fluctuation energy scale J, the
phonon degrees of freedom can be treated classically. The
Hamiltonian is then written as,
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where §; is the distortion at site 7, K the string constant
(= Q/(2g?%)) and the last term corresponds to the elastic
energy loss. J; is expressed in units so that the magneto-
elastic coupling, which can be absorbed in the definition
of K, is set to unity. It is interesting to notice that the
frustration a alone (i.e. g = 0) can lead to a dimer-
ized state for o > a, ~ 0.241167 (Ref. ,@,E,@,@).
In fact, the relevance of « is two fold; (i) it is required
to explain qualitatively the properties of the real com-
pounds (o ~ 0.36 has been proposed in CuGeQO3) and
(i1) it can be used in numerical simulations to reduce the
spin-spin correlation length (for @ = 0.5 and ¢ = 0, it
is only one lattice unit) and hence to reduce finite size
effects.

The substitution of a spin-1 by a spin-S (S=0 or 1) im-
purity 1s then studied using these Hamiltonians on chains
with periodic boundary conditions. The impurity is cou-
pled to its first and second nearest neighbors (see Fig. EI)
For sake of simplicity, the couplings between two spins—%
or between a spin-S impurity and one of its spin—% neigh-
bors are taken identical, 7.e. the same values of J, «, ¢
and € are considered all along the chain independently
of the nature of the spins. For instance, in the case of a
spin-1 impurity, the Hamiltonian impurity part is explic-
itly
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where the impurity spin operator is § and [ (m) refers to
its two nearest (next-nearest) neighbors. However, for a
spin-0 impurity, the situation is simpler: all links between
the impurity and its spin—% neighbors are taken as zero.
In this case, when a = 0, the system corresponds to a

chain with open boundary conditions (OBC).

Impurity

FIG. 1. Example of a periodic chain with L.=5 spin—% sites
and an additional impurity. Nearest neighbor (solid lines) and
next nearest neighbor (dashed lines) links are plotted. Bold
links correspond to the links between the impurity and its

spin- % neighbors.

B. Dynamical model

Numerical technique: A reliable numerical treatment of



Hamiltonian () is a difficult task. Indeed, the phononic
Hilbert space is infinite, even for a ﬁnitE:hain. Possi-
ble approachessuch as QMC simulationstEd single-mode
approximation% or ED with a fixed maximum num-
ber of phononstd have been proposed. The results ob-
tained in this paper are based on an ED calculatian using
the coherent states introduced by Fehrenbachertd. Pre-
liminary results have been reported in Ref. @ in the
case of pure systems and Ref. @ for rings with im-
purities in the absence of frustration. On each site,
a two state basis including the phononic vacuum |0);
and a coherent state |1); is considered. The phononic
part of the Hamiltonian (ﬂ) can be rewritten as Hpn =

JXY (b, + bZT)AZ' +Q5, bib. . where ) is a constant and

1271
A; an operator of eigenvalues 0 and 1 (the constant terms

subtracted to §Z ~§j in (EI) and (E) have been introduced
with this purpose). It is convenient to introduce the co-
herent state

|1); = exp (—n*/2) exp (1 b])[0)s,

where n is a variational parameter. In fact, |1); is an
eigenstate of the phononic Hamiltonian for fixed 4; = 1
provided that n = ny = —AJ/Q. Tt is shown in Fig. E(a)
that ng is the best value of 5 at small coupling. Fur-
thermore it is a reasonable choice for arbitrary coupling.
Therefore we shall assume n = 7y in the remainder of
the paper. Note that the method could be improved by
choosing explicitly the optimum 7 that minimizes the en-
ergy for each set of parameters. The comparison between
this coherent state approach (using ng) and a trunca-
tion of the phononic Hilbert space retaining two or eight
phonon states at each site is illustrated in Fig. J(b) for
the GS energy and the mean phonon number per site.
The results are much more accurate using coherent states
than when only keeping two phonon states even though

T T T T —, g
(@) ' (b) o |8
02 MLr e75
! S >
1 g c
/ i,;i 3
! ™ o-18
/ “0000-"C7 | =
< | & casee®® .
w o1y F- m
w & / 3
< | / o S
& / -1 F 13
S , N @
AR A o,
0.0 gﬁ»A—A & g
(&

AN
Il Il Il - Il Il
00 05 10 15 00 0.5 1.0 1.

nn, g

(53]

FIG. 2. (a) Relative GS energy of a 4-site chain as a func-
tion of the variational parameter nfora =0.5,9g=0.5,Q=J
(A)yand a =0,g=1., Q=J (0). (b) GS energy (full line)
and mean phonon number (dashed line) per site for a 4-site
chain using a two (o), eight (e) phonon states truncation, and
using the coherent state approximation with n = no (O) as
a function of the magneto-elastic coupling g for @ = 0 and

Q=J.

both Hilbert spaces have the same sizes. Note that al-
though the GS energy is accurately obtained, the co-
herent state basis seems to slightly overestimate the
mean phonon number. However, even at large couplings,
the phonon dynamics is qualitatively preserved. Con-
sequently our non-perturbative approach takes properly
into account the effects of the phonons and the results
can be checked by comparing to a full phonon calcula-
tion on small clusters (typically with L = 4 sites) as
in Fig. fl(b). This variational treatment of the dynami-
cal phonons hence enables us to handle clusters with up
to I = 16 sites. Special care is needed for the treat-
ment of the bonds connected to the spin-1 impurity. In-
deed, special variational parameters (still corresponding
to o) have to be chosen for these bonds because the
corresponding A; operators for the phononic part of the
Hamiltonian differ from those of the rest of the chain.

Results: Let us summarize the main properties of this
model. It has been shown that the GS of this model
undergoes at 7' = 0 a spontaneous symmetry breaking
toward a dimerjzed gapped phase in a large region of
parameter spacet2l. The elementary excitations are char-
acterized as topological solitons, z.e. unpaired spins sep-
arating the two different dimer patterns. Furthermore
solitons (s) and antisolitons (5) do not bind. More explic-
itly, one can define the ss binding energy as the p — oo
extrapolation of

Ey (L = 2p) = [Eo(2p, 1) — Eo(2p, 0)] — 2e,, (4)

where Eq(l,S;) is the GS energy of a [-site periodic chain
in the S% sector. If [ is even and S* = 0, Eq(l, S?)
corresponds in fact to the “vacuum” energy, the energy
of the pure chain without any topological defect. e
is the soliton (antisoliton) minimum energy, defined as
es = limy o [Eo(2p+1, ) — E§ (2p+1)], where Ef(2p+1)
is the interpolation between Fq(2p,0) and Ey(2p + 2,0).
Thus, e, results as the energy difference between an odd
chain containing a soliton and an (hypothetical) odd
chain without soliton. Similarly, Fp(ss, L) is the energy
difference between a chain with a s§ pair and two iso-
lated solitons. Previous studies provi@e strong evidences
that the ss binding energy vanishestd, z.e. EFp = 0 in
the thermodynamic limit in the absence of any explicit
dimerization. Similar forms of binding energy will be
discussed in the context of impurity-soliton binding.

We first consider the case of a non-magnetic impu-
rity. Typical patterns are shown in Fig. E(a) for parame-
ters corresponding to CuGeQOs. For even chains, the dis-
tortion pattern §; = g(blT + b;) rapidly oscillates with a
two site period. The equilibrium pattern corresponds to
strong bonds (i.e. d; positive) next to the impurity. The
amplitude |J; | varies along the chain with increasing mag-
nitude for decreasing distance to the impurity. In other
words, the impurity being located on site 0, the strongest
bonds are the ones connecting sites 1 and 2 and sites L-1
and L. In addition, the average magnitude of the modula-
tion increases with a stronger magneto-elastic coupling or



weaker phonon frequency. The z-component of the spin
(S7) is zero because the chain is in a dimerized singlet
state. For odd chains (Fig. f|(b)), the presence of a soli-
ton at the center of the chain is signaled by a point where
d; vanishes and (S7) is maximum. This corresponds to
the characteristic schematic picture of the soliton as an
unpaired spin separating two dimer patterns. Similarly
to the even chain case, strong bonds also form at the
chain edges. The finite frustration that we have consid-
ered here does not seem to change the main features of
the pattern (see Ref. @ for comparison). The fact that
the soliton forms at the center of the chain suggests that,
contrary to the conclusions of Ref. , solitons do not
bind to non-magnetic impurities in pure 1D spin-lattice
models.
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FIG. 3. Distortion 4; (#) and z-component of the spin {S7)
(o) as a function of the site i on (a) a 12-site and (b) a 13-site
chain for o = 0.36, g = 0.8 and Q = J with OBC using ED.

In order to be more quantitative, we define a soliton-
impurity binding energy similarly to (E),

—8 ‘ ‘ 1 % [«
El-s(L=2p+1)=[Ey(2p + 1, 5) — E5(2p+ 1)]
— e, —er, (5)

where E{(l,S?) is the GS energy in the S? sector of a
chain with [ spin—% sites and with an extra impurity. e
is an impurity minimum energy, e; = lim, oo [E(2p, 0)—
FEo(2p, 0)], which indeed corresponds to the energy differ-
ence between a chain with and without an impurity.

The results shown in Fig. [| (a) reveal no binding for
any finite chain. Note that finite size effects are small
for parameters in the vicinity of the MG point because
of the small magnetic correlation length present in this
case.

The same calculations can be performed in the case of a
spin-1 impurity. The different scaling behaviors in Fig.
(% for the spin-0 and % for the spin-1 impurity) suggest
that the physics involved is also different. Although a #
behavior may also occur for larger rings with a spin-1 im-
purity, our data are nevertheless compatible with a small
binding between the spin-1 impurity and the soliton.
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FIG. 4. Soliton-impurity binding energy using ED for
a=059=04,Q2=03] (M) anda =0,g =045 Q=0.3J
(e) (a) as a function of the inverse square chain length /5 in
the case of a spin-0 impurity; (b) as a function of the inverse
chain length % in the case of a spin-1 impurity.

C. Adiabatic model

Numerical technique: As seen above, a full treatment
of the lattice dynamics is tedious and restricted to small
clusters. On the other hand, when 2 — 0, an adiabatic
approximation of the lattice is justified and enables us to
handle larger clusters both in ED or QMC calculations.

The main technical issue 1s to find the set( ())f distortions
- . e A(H\? .
{6;} which minimizes the total energy, <—85“—> = 0, which

leads to
J(S; - Sip1) + Ké; = 0, (6)

where (---) is the mean value in the GS for an ED cal-
culation or some thermal average for a QMC calculation.
Eq. (E) must be solved with the constraint of zero total
distortion,

Za‘i =0. (7)

This problem is clearly self-consistent since in the equi-
librium condition (E) the distortion pattern is present in
both terms: implicitly in the first one because the GS
depends on it, and explicitly in the second one. Conse-
quently this problela can be treated using the following
iterative procedure.B First, a randomly chosen set {57}
satisfying () is taken. Applying the equilibrium condi-
tion (E), where the mean values are considered using the
adiabatic Hamiltonian with the set {47}, gives another
set {4/} of distortions. After subtracting its mean value,
a new set, {§}} satisfying ([]) is then obtained and the
procedure is repeated until convergence.

This scheme can be applied using ED or QMC tech-
niques. Note however that in this last case, although
larger lattice sizes can be considered, one is restricted to



the non-frustrated o = 0 case to avoid the minus sign
problem. As expected, for a (pure) periodic chain, the
static uniform dimerization pattern §; = (—1)!§ is ob-
tained through this procedure.

Results: Tn this part, we shall study the introduction
of a spin-0 or a spin-1 impurity in a chain described by
the adiabatic Hamiltonian. It is here crucial to enable
the magnitude of the modulation |§;| to vary along the
chain. A QMC self-consistent method is used so that we
shall restrict ourselves to the non-frustrated a = 0 case in
order to avoid sign problems. A standard world-line al-
gorithm was implemented. Most of the calculations were
performed at T' = 0.05J which we have shown in pre-
vious studigﬁ w enough to reflect essentially the GS
properties ELEIET Besides, since we are mostly interested
in GS properties we have carried on the simulations in
the subspace of minimum z-component of the total spin.
The number of slices in the Trotter direction was taken
equal to M = 120.

Patterns of dimerization are shown in Figs. E and E for
a chain with a spin-0 impurity and are similar to those
observed using the dynamical approach. For even chains,
the main features are identical (Fig. [l). The distor-
tion rapidly oscillates with a two-site period with strong
bonds on the edges, where the impurity lies. Its am-
plitude is slightly varying along the chain, the strongest
distortion magnitude being observed at the edges. The
magnitude of the distortion decreases when K increases
as seen in Fig. E The z-component of the spin (S7) van-
ishes in this case because the chain is in the singlet dimer
SP state.
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FIG. 5. Distortion patterns §; on a 80 site chain as a func-
tion of the position i for @« = 0, K = J (e, the dotted line
between the computed points is not shown for clarity) and

K =3J (o) using QMC (T = 0.05.J).

For odd chains, a single solitonic excitation is located
away from the edges as shown in Fig. ﬁ Its presence is
inferred, as previously, from a local vanishing J; and a
maximal (S?). In this case we consider the local spin
susceptibility,

Xi = %Z(Sf S2) (8)

J

instead of (S7). Indeed, when using a QMC algorithm
with an odd number of sites, a fictitious site has to be
added and the total spin of the chain can fluctuate be-
tween +% and —% through spin flips with this additional
spin. However, the spin susceptibility y; deals with a
z-component of the 1 pin with respect to the chain
global spin orientationEdtd, Note that, however, this ex-
citation is topological in nature in the sense that y; in-
tegrated in space on a finite region gives exactly a Curie
law of a spin—%. The soliton width increases as the spin-
phonon coupling decreases and becames a sinusoidal dis-
tortion in the weak coupling limit.Ed In fact, the inverse
soliton width, the spin gap, and the amplitude of the
dimerization are three different features of the SP transi-
tion and all of them increase with the spin-phonon cou-

pling.

FIG. 6. Distortion §; (a) and magnetic susceptibility x;
(b) patterns as a function of the position i on a 79 site chain
for « = 0, K = J (o, O correspond to two different runs)
and K = 2.5J (A) using QMC (T = 0.05J). Lines joining
computed points are not plotted for clarity.

Tt is interesting to notice that different QMC runs (o
and O in Fig. ﬂ) lead to the very same solitonic patterns
centered at different sites in a large area around the mid-
dle of the chain. This is another evidence that there is
no binding between non-magnetic impurities and solitons
in this strictly one-dimensional model. The fact that the
solitons are at least a distance away of the edges equal
to half the soliton width indicates a likely short range
repulsion between the soliton and the impurity.

Next, we turn to the case of a spin-1 impurity. Typ-
ical distortion and susceptibility patterns are shown in
Fig. [] for an odd length chain. In first approximation,
the spin-1 1 rity and its two spin—% neighbors behave
like a single?ﬁi‘e‘ like a spin-0 impurity as indicated by
very strong bonds connected to the spin-1 impurity. This
three-spin object is weakly connected to the rest of the
system as indicated by particularly weak bonds (d; < 0)
between sites 1 2, and L-1 and L (the impurity is
located at site 0).[9 Furthermore, strong bonds can even
be observed close to this composite object (see arrows in



Fig. ﬂ) as 1t is the case for a real S=0 impurity. Physi-
cally, the three-spin cluster spends most of the time in a
singlet state configuration. One observes that the soliton
always stays quite close to the impurity, independently
of the QMC run, suggesting a small residual impurity-
soliton binding, consistent with the previous dynamical
calculation.
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FIG. 7. Local distortion é; () and z-component of the local
spin (S7) (o) as a function of the position i on a 79 site chain
for @ = 0 and K = 1.5J using QMC (T = 0.05J). A spin-1
impurity is located at site 0 at the middle of the figure and
periodic boundary conditions are used. Two arrows indicate
particularly strong bonds (4; > 0) next to the spin-0 object
formed by the spin-1 and its two neighbors.

I11I. EXPLICITLY DIMERIZED CHAINS

The Hamiltonians considered in Sec. ﬂ are purely one-
dimensional. However, in SP compounds, the phonons
have a three-dimensional character. Omne of the sim-
plest models proposed in the literature to take this
three-dimensional behavior into account is the dimerized
Heisenberg chain,

-

Har = J 3 _[(1+3(-1))Si - S + a5 Sl (9)

where 4 is an explicit dimerization. Contrary to the mod-
els considered in Sec. ﬂ, the distortion pattern is here
static and uniform. It is interesting to note that this
Hamiltonian (g) can 1n fact be inferred from the dynam-
ical Hamiltonian (m hen only the dominant m-mode
phonon is considered

The dimerized Heisenberg chain has been widely stud-
ied in the literature. Its main features are the following:
the elementary excitations can be interpreted as mag-
netic solitons and antisolitons (or spinons), namelyg@
lated spms—— separating two dimerization patterns
As in the models considered in the previous section, for
even site chains, solitons and antisolitons do not ex1st n
this model as independent particles but appear in pairs.
However, in this case, as a difference to those models,

they are confined by a li otential proportional to
d(# 0) in the weak § limltﬁ@@ It has also been shown
that the excitation spectrum is constituted of a ladder
of soliton- antlsohtoggﬁnd states lying below a two-
magnon continuum The differences between the
models studied in the previous section and the present
one can be schematically visualized in the large dimer-
ization limit as in Fig. E While in the fully quantum dy-
namical model both the distortion pattern {4;} and mag-
netic dimers are two-fold degenerate, in the chain with
fixed dimerization only one of the distortion patterns is
chosen and a magnetic state with ss pair separating two
magnetic dimers configuration would leave a region with
a “wrong” pattern in between the soliton and anti-soliton
thus leading to a confining potential. On the other hand,
this confining is absent if Hamiltonian (f]) is considered
since in this case the lattice would relax following the
magnetic order.

FIG. 8. (a) The two-fold degenerate GS of Hamiltonian
(ﬂ) The solid (dashed) lines indicate strong (weak) bonds
and dimer singlets. (b) The fixed dimerization pattern of
Hwr (above) and a magnetic configuration of singlet dimers
with a s3 pair (below). (c) A magneto-elastic state without
(above) and with a ss pair (below) of Hamiltonian (E)

The case of an odd chain with open boundary con-
ditions, z.e. with a spin-0 impurity cutting the chain,
has been extensively studied in Ref. . It has been
shown that, due to the linear confining potential, an iso-
latedgoétg binds to the spin-0 impurity next to a weak
bond . In this section, we generalize the approach
of Ref. E to investigate the possibility of several bound
states and to study the low energy spectrum. Following
Ref. , we assume that the dimerization is stabilized by
a strong frustration a ~ 0.5 while the “confining force”
introduced by d remains small. The excitation spectrum
with respect to the “vacuum” energy i.e. the GS energy
of a periodic even chain (without any defect) interpolated
to odd chains, is shown in Fig. E The energies could also
be equivalently measured with respect to the beginning
of the continuum but finite size effects affect its posi-
tion making results more dependent of the lattice size.
For a = 0.5 and § = 0.05, four soliton-impurity bound
states below the continuum can be clearly identified. The
energy of the soliton-impurity bound state can increase
up to an upper bound, above which it becomes energeti-
cally more favorable to create a soliton-antisoliton bound
state. This state, which is a combination of a soliton-



impurity and soliton-antisoliton bound states, has a spin
% and is the lowest state of the continuum. We have
checked that its energy Eo(2) = (0.7949 £ 107%)J, is in
the thermodynamic limit the sum of the lowest impurity-
soliton bound state Eo(%) = (0.2748 £ 10=%)J plus the
lowest energy of a s5 bound state, i.e. the spin gap A% =
(0.5200 & 10=%)J, where A" = Ey(2p, 1) — Eo(2p,0) in
the notation of Eq. ({f). The above energies are infi-
nite size extrapolations obtained with ED and DMRG
for « = 0.5 and § = 0.05.
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FIG. 9. Lowest lying S* = 1 (o) and 5% = £ (X) excita-
tions for the & = 0.5 and § = 0.05 Heisenberg chain as a func-
tion of the square inverse of the chain length L (up to L=25)
obtained by ED. The energy reference is the GS of the even
periodic chain interpolated to odd sizes. Dashed lines repre-
sent a (%, %) fit and the extrapolations to infinite sizes are
indicated. DMRG extrapolations are also plotted (¢). The

dot-dashed line indicates the onset of the continuum.

The wave functions (S7) obtained in a DMRG calcula-
tion shown in Fig. [L0 . clearly support this scenario. The
four lowest states (a,b,c,d) show a soliton bound to the
weak bond edge, and the soliton moves further away from
the 1impurity When its energy 1ncreases In contrast, in
the lowest spln—— state (Fig. E ), a s§ bound pair can
be clearly identified in addition to the solitonic GS seen in
Fig. E . The number of soliton-impurity bound states
below the continuum seems to increase Wlth@ gs was

originally proposed for the number of ss pairs

IV. ELASTIC INTERCHAIN COUPLING

The three-dimensional character of phonons has been
considered in Sec. using the dimerized Heisenberg
chain. However this can be achieved in a more appro-
priate way by adding to the pure 1D models of Sec. ﬂ
an interchain coupling. Such an approach is particularly
necessary for materials with large anisotropy in the elas-
tic properties. Our motivation here is to improve the
description of Sec. in order to enable the lattice to
locally relax following the magnetic order. As seen pre-
viously in the case of isolated chains, such effects are
crucial in the presence of inhomogeneities introduced by

local magnetic excitations (solitons) or impurities and
lead to important qualitative differences with the dimer-
ized Heisenberg chain (f]).
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FIG. 10. {S7) as the function of the site i for the four lowest
spin—% (a,b,c,d) and the lowest spln—5 state (e) for a = 0.5,
4 = 0.05 on a 51-site chain using a DMRG algorithm. The
bond between the first two sites is “weak”. In (e), a magnifi-
cation by a factor 6 has been applied to the points left to the
dashed line. The 7 first sites of the lowest bound state (a)
(4) and a soliton-antisoliton pair on a 44 site lattice () are
also shown for comparison.

In a quasi-1D SP compound, a given chain cut at its
ends by spin-0 impurities (“impurity chain”) is immersed
in the bulk. The neighboring chains are in the SP phase,
i.e. they have a uniform dimerization, and produce on
this chaina ¢ = poﬁ@lal through an elastic interchain
coupling of the form

Hy =K1Yy &6,

where §; is the distortion of the impurity chain, {d§*"} are
associated to the neighboring chains and K is the in-
terchain elastic coupling constant. Note that using this
model, two neighboring chains can be in phase or out
of phase depending on the sign of K;. The neighbor-
ing chains can be treated in the mean-field approxima-
tion while fully retaining the dynamics of the considered
chain: §§* = (—1)+1§,. Consequently, one obtains,

%J_ = [&7/ Z(—l)H—léi’

where K' = K| dg.
As schematically shown in Fig. [[1](a), in a strong exter-
nal potential, the situation is similar to the one of Sec. :



the soliton 1s bound to the spin-0 impurity at the weak
bond edge. However, in a weak external potential, results
of Sec. E suggest that solitons can delocalize away from
the spin-0 impurity edge as depicted in Fig. El(b) leaving
strong bonds at the edges. Our aim here is to study how,
when switching on an external potential and increasing
it, the soliton binds to the impurity. The results shown
in this part are obtained using an adiabatic treatment of
the lattice and a QMC simulation of the spin degrees of
freedom (similar to Sec. ) for non-frustrated chains
with spin-0 impurities. Consequently, the lattice can be
seen as open chains with two unequivalent non-magnetic
impurities at its edges.

FIG. 11. Introduction of a non-magnetic impurity in a
three-dimensional spin-Peierls compound. Schematic pattern
pictures are drawn for the case of K’ > 0. (a) corresponds to
a strong external potential and (b) to a weak external poten-
tial. Full (dashed) lines symbolize strong (weak) bonds.

We first consider the case of an odd size chain. For van-
ishing K’, the soliton is free and strong bonds (4; > 0)
occur at the two chain ends. A non-zero K’ creates a lin-
ear confining potential between the soliton and the impu-
rity where the potential tends to form a weak bond. This
confining potential then equilibrates with the short range
impurity repulsion. Consequently, the soliton moves to-
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FIG. 12. Lattice distortions 4; as a function of the position
ion a 79 site chain for @« = 0, K = 2J with an interchain
coupling K' obtained by QMC simulation (T" = 0.05.J). The
value of K’ is indicated on the graph.

wards the impurity when the interchain coupling K’ in-
creases, as can be seen in Fig. E Moreover, the magni-
tude of the dimerization increases with K’ as expected.
Note that the distortion pattern obtained in Fig. [4(d),
1.e. stronger bond on one edge and zero distortion at
the other edge, is strikingly different from those of Ref.
@. These two different behaviors (obtained for i ~ 1
and i ~ L) are in fact expected on each side of any given
impurity in this system.

For even size lattices, two cases have to be examined. If
the free distortion pattern and the external potential are
in phase (i.e. if K'6009" > 0, where 87 = §;(K' = 0) ),
the external potential amplifies the free distortions seen
in Fig. ﬂ with strong bonds on the edges. However, if
they are out of phase, the external potential will create
two topological soliton defects. These excitations move
to the chain edges and become more localized when the
external potential increases—similarly to what happens
for a static dimerized chailfﬁﬁ.n The patterns shown in
Fig. B support this scenario: a spin :l:% is located near
each edge. Note that at low temperature, this excess of
spin—% at the chain’s ends oscillates between positive and
negative value for different QMC runs, corresponding to
the S — —5% symmetry. Consequently the role of the
interchain elastic coupling is crucial in order to stabilize
impurity-soliton bound states.
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FIG. 13. Lattice distortions 4; () and z-component of spin
(57) (o) as a function of the position i on a 80 site chain for
a =0, K = 2J with an interchain coupling K’ using QMC

T = 0.05J). The value of K'is indicated on the graph.

The formation of the ss topological defect in the open
chains with an even number of sites I (as described
above) is particularly subtle. In fact, because of the
finiteness of the energy cost A%l (or 2e; if the solitons



are far away) associated with the formation of the de-
fect, one can, on general grounds, deduce the existence
of a critical value K. of K’ in such a phenomenon. A
comparison between the energy cost o« 2e, ~ A and
the transversal elastic energy gain o K'(L — 2T), where
[ is half the soliton width, leads to K. ~ A%t /(L — 2T).
Since A’ increases with decreasing L, and T = I'(K)
is roughly independent of I (see Ref. @), then we ex-
pect that K decreases for increasing chain length. For
K = 2 we have obtained K. = 0.050,0.032 and 0.005
for L = 20,40 and 80 respectively, thus confirming this
prediction.

For real SP compounds doped with non-magnetic im-
purities, chains are cut at random places. By simple in-
spection of all possible configurations, the previous study
shows unambiguously that exactly one spin—% becomes
bound to each impurity due to the interchain elastic cou-
pling responsible for the three-dimensional character of
the lattice dynamics provided that K’ > K.. How-
ever, in chains short enough that K.(L) > K’, non-
magnetic impurities at the ends do not carry magnetic
moments. In other words, let us assume that one, by
thought, moves closer to each other two impurities with
respectively a soliton and anti-soliton bound to them.
Our previous analysis shows that, below a critical sepa-
ration L. ~ 2I'+ A% /K’ between the two impurities, this
magnetic state becomes unstable towards a new config-
uration where the soliton and the antisoliton annihilate
each other and leave behind a dimerization pattern in an-
tiphase with the 3D order. Notice that such open chains
are most likely to appear in the system after doping since
the probability distribution of lengths is P(L) = ¢(1—¢)T,
where ¢ is the impurity doping. Furthermore, the char-
acteristic distance L. can become fairly large for small
interchain elastic coupling K.

Finally, in Fig. @ we show the staggered spin-
spin correlation function C)(|i — j|) = (1/1I) D <§Z .

§j>(—1)|i_j| (normalized such that C*)(0) = 1) for
L =80, K = 2 and K’ = 0 and 0.02 obtained by
QMC. A clear enhancement of the AF correlations can
be seen when a soliton-impurity bound state i1s present
(K’ = 0.02) in contrast to the case of an almost uni-
form pattern with strong end bonds shown in Fig. E
(K’ = 0.0). This result is consistent with the enhance-
ment of AF correlations close to an impurity for weak
end bonds found in Ref. @ One expects that this in-
crease of the AF correlations in the vicinity of impurities
carrying an effective spin-1/2 magnetic moment can be
observed in inelastic neutron experiments at low energy
transfer and momentum transfer ¢ ~ .

Our results are also consistent with the experimen-
tal observation_of Curie laws in the susceptibility of Zn-
doped (spin-0)&d and Ni-doped (spin-1)E CuGeOz ma-
terials. Note however that, in the case of Zn-doping, due
to the mechanism described in Sec. m, a significant frac-
tion of the impurities may not carry an effective spin-1/2
leading to a reduction of the magnitude of the Curie
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FIG. 14. Staggered spin-spin correlations in the 80 site
chain with K = 2 obtained by QMC (T = 0.050). Peri-
odic boundary conditions with K’ = 0 and OBC with various
values of the interchain coupling K’ as indicated on the plot
have been considered.

term. In the case of Ni-doped CuGeOsz (Ref. @), an
interesting cross-over at low temperature was observed
between two different Curie law behaviors. We interpret
this low temperature behavior with the formation of an
effective singlet at the Ni-site which can bind a spin—%
soliton as described in Sec. E

V. CONCLUSION

In this work, we have studied several spin-lattice
models using various numerical techniques. Local non-
uniform dimerization patterns have been obtained result-
ing from inhomogeneities due to impurity doping. We
have shown that the lattice responds strongly to the vari-
ation of the spin density even in the adiabatic case. Bind-
ing between elementary solitonic excitations and spin-S
impurity (S=0 or 1) has been investigated. In strictly 1D
models, no binding between solitons and non-magnetic
impurities occurs. However, a small binding between
spin-1 impurities and solitons has been inferred. The
role of the three-dimensionality of the lattice was also
investigated by comparing a model with a fixed mean
field-like dimerization to a model with an explicit cou-
pling to an adiabatic lattice which can locally relax to
follow the magnetic order. In the latter case, the inter-
chain elastic coupling was shown to be responsible for the
binding of solitons to spin-0 impurities. However, in con-
trast to the dimerized Heisenberg model, we predict in
this model the existence of S = 0 impurities carrying no
spin-1/2 solitonic excitation. These impurity sites must
appear in pairs separated by sufficiently small chain seg-
ments with an even number of sites and a dimerization
pattern in antiphase with respect to the 3D dimerization
order.
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